Math MTSS

I. Classwide intervention
II. Individual intervention
III. Screening Post-COVID

Amanda VanDerHeyden www.springmath.com
@amandavande1
@springmathk8
amandavande@gmail.com

All these kids been

 learning Common Core math, bout to learn howto "Carry the One" from their new homeschool teachers.

Lee, 2012. College for all: Gaps between desirable and actual P12 math achievement trajectories for college readiness. Educational Researcher, 41, 43-55.

Meeting State Proficiency Standards is Generally Not Sufficient

——National Average Scores (ECLS \& NELS) ---- National (NAEP) Standards for Proficiency
\longrightarrow International (TIMSS) Benchmarks for Proficiency \longrightarrow State Standards for Proficiency
——On Track for 4-Year College Completion ——On Track for 4-Year College Entrance
\rightarrow On Track for 2-Year College Completion $\quad \pm$ On Track for 2-Year College Entrance
FIGURE 1. National P-12 education math achievement trajectories for college readiness: actual (national average scores) and desirable (standards and benchmarks) levels in cross-grade g scores. ECLS = Early Cbildhood Longitudinal Study; NELS = National Education Longitudinal Study; TIMSS = Trends in International Math and Science Studies; NAEP = National Assessment of Educational Progress.

Teachers

- "... average gains in learning across classrooms, even classrooms within the same school, are very different. Some teachers year after year produce bigger gains in student learning than other teachers. The magnitude of the differences is truly large, with some teachers producing 1.5 years of gain in acheivement in an academic year while others with equivalent students produce only $1 / 2$ year of gain. In other words, two students starting at the same level of achievement can know vastly different amounts at the end of a single academic year due solely to the teacher to which they are assigned. If a bad year is compounded by other bad years, it may not be possible for the student to recover."
p. 467, Hanushek, 2011

Math Success is Highly Predictable (so is risk)

Figure 2. Classification and regression tree model decision rules for identifying Mississippi students as at risk of failing to meet the ACT college readiness benchmark in math, based on grade 5 math achievement and race/ethnicity, 2011/12-2016/17

Koon, S., \& Davis, M. (2019). Math course sequences in grades 611 and math achievement in Mississippi (REL 2019007). Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Southeast. Retrieved from
http://ies.ed.gov/ncee/ edlabs

Prevention Effects from Effective Instruction in Math Are Cumulative!

Beginning of Year DIBELS Math Composite Percent Proficient

The Equity Promise of MTSS: Effective Instruction for All

The School Psychologist as Instructional Ally: Don't Do This

Paralysis by Analysis

Low-Yield Tactics

Instead, Do This

Report to Leaders

- Dose, Growth on Proximal, Growth on Distal

Teacher
Class:
Assessment info: Math Computation, Muit-Div Fact Families 0-12, Grade 4

Percentage of Skills Percentage of Skills Mastered (2017-2018) Mastered (2018-2019)
Kindergarten
58\%
100\%
$1^{\text {st }}$ Grade
$2^{\text {nd }}$ Grade
$3^{\text {rd }}$ Grade
$4^{\text {th }}$ Grade

Percent Proficient on Winter DIBELS Composite by Grade \&

Percent Proficient on PSSA (State Year-End Test) for Grades 3 and 4

Within-Class, WithinYear Improvements

Across-Class Differences

Instructional Effects
Grade: 1, Date Range: $3 / 2 / 2015-6 / 30 / 2015$
Assessment: Math Computation, Addition Facts 0-20, Grade

Analyze By Teacher
Assessment: Math Computation, Addition Facts 0 -20, Grade 1
\square Mean \square Median.

What Must Leaders Know?

- What actions are underway?
- What are the results right now?
- Where is support needed?
- Are proximal indicators headed in the right direction?
- What are the barriers we can troubleshoot?

1st Grade

\checkmark Student Groups:

Summary Notes for 1st Grade

- Group 01\#1 (Courseld-Sectionld): Progress is fantastic. This class is progressing at 1.9 weeks per skill. We'd recommend asking this teacher what's working and if they have any tips for others.
- Group 01\#1 (Courseld-Sectionld): This class has been on one skill for over 4 weeks. It might be worth checking in with them.
- Group 01\#1 (Courseld-Sectionld): This class has low intervention consistency. This means scores aren't being entered in Spring Math each week. We would recommend checking with them to make sure the scores can be entered.
- Group 01\#2 (Courseld-Sectionld): Progress is fantastic. This class is progressing at 1.8 weeks per skill. We'd recommend asking this teacher what's working and if they have any tips for others.

20\% Classwide Interventions

Teacher (Group)
D User (Group 01\#1 (Courseld- Sectionld))
DUser (Group 01\#2 (Courseld- Sectionld))
D User (Group 01\#3 (Courseld- Sectionld))

2 Individual Interventions

Teacher (Group)	Current Intervention	Mostrecent score entry	Intervention Consitency	Average Weeks Per Skill
D User (Group 01\#1 (Courseld-Sectionld)) Connelly, Margaretta as Of Date				

Teacher: Are
Students
Growing?

Teacher:
Does Growth Transfer?

This class/group is not in the active school year. The form is disabled and kept for reference only.

Hide Students scores

- Winter Screening
- Final Classwide Intervention

Seasonal Growth

Think about Return on Investment

 Per Student, Per 1 SD gain in outcome
"Changing math curricula as an approach for whole-school intervention when large numbers of students do not achieve proficiency is more costly than targeted, preventative math intervention" (Barrett \& VanDerHeyden, in press)

Use Classwide Intervention

- It takes 15-20 min per day.
- It's curriculum neutral and supplements.
- All students show benefits.
- It makes future risk decisions more accurate.

Use Class-wide Intervention

Classwide Intervention
Screening
Students
Classroom Performance
80\% of your class appears to be at risk and in need of intervention to benefit from grade-level instruction.
We call this a classwide problem and recommend a classwide intervention.

Next Steps: Performing Class Wide Interventions

High-Yield Action: Use Class-wide Intervention

Pre-Intervention

Classroom Performance
96\% of your class appears to need extra practice to reach mastery at this this grade level.
We call this a classwide problem and recommend classwide practice to get the class on track to reach mastery.
52\%

Post-Intervention

Use Classwide Intervention

Classwide Intervention Works (when used well)

When Managed, Classwide Intervention Works!

	Absolute Risk Reduction	Number Needed to Treat
All Students	15%	7
Students receiving F/R Lunch	18%	6
Students receiving Special Education Services	39%	3
Low-Performing Students	44%	2

Source: VanDerHeyden, McLaughlin, Algina, \& Snyder, 2012; VanDerHeyden \& Codding, 2015

How-To For Classwide Intervention in Math

To Get Started:

- Intervention protocol.
- Here is one to try: https://static1.squarespace.com/static/57ab866cf7e0ab5cbba29721/t/5d67e d2a390a160001c5b4ac/1567092010232/Spring+Math+Classwide+IP.pdf
- Sequence of skills
- Daily practice materials
- Weekly assessment materials
- Criteria for decision making, a way to graph progress, and implementation support structures

Suggested Student Pairings

Adams, Maximus	Goyette, Dangelo
Homenick, Darrin	Rolfson, Keegan
Lehner, Salvador	Blick, Jerald
Collins, Lamont	Skiles, Daphnee
Reichert, Marlen	Kozey, Monserrat
Greenholt, Clovis	Turcotte, Kayleigh
Kreiger, Selena	Champlin, Gertrude

Intervention Protocol

Classwide Fact Families: Add/Subtract 0-9
Student:
Teacher: Poul Muyskens
Grade: 01 Class name: I Mathematics (-HaydenDate: 1/22/2019

Classwide Math Intervention

Preparation:

- This is your master set of materials for the week.
- Make I. 5 copies of the practice sheets Day I-5 for each student in your class (ex. if you have 20 students make 30 copies). Each student will have one copy for independent practice, while each pair of students will have one copy for paired practice.
If you are using flashcards to practice, you can make only I copy per student.
- To set up your student pairs click on "Students" in your dashboard, then "Suggested Student Pairs."
- Identify the first "Worker," which should be the higher-performing student. This student will always work first.
\square Say, I's time for Spring Math. Please get together with your math partner. Please take out your practice materials, have your colored pen and pencil out, and show me you are ready.
\square Say, Workers, your job is to work as many problems correctly as you can. As you work, be sure to talk through the problem so your partner can HEAR and SEE you solve the problem. Use a quiet voice while you work.
\square Say, Helpers, your job is to follow along, listen and watch as the worker is working problems. If you see an error, speak up! Say, "Stop, Let's check this one."

You should give the worker a hint, point to the exact error, but don't give them the answer. See if the worker can fix the error.

If the worker is stuck, give the answer but solve it aloud so the worker knows how you got that answer. If you get really stuck, circle the problem and ask me for help.
\square Set the timer for 3 minutes.
\square Say, Remember, your gool is to work as many problems as possible with 100% accuracy. Ready? Begin'Start the timer when you say Begin.

Active Ingredients

- Modeling
- Practice for the right level of difficulty (opps to respond, complete learning trials)
- Corrective feedback \& repetition loop
- Goal setting
- Delayed error correction w verbal rehearsal component
- Reward
- Advances difficulty based on proficiency

Classwide Intervention Progress

Skill Tree Progress

- Sumsto 6

V Sums to 12
v Subtraction 0-5

V Sums to 20

- Subtraction 0-9

Fact Families: Add/Subtract 0-9

O Subtraction 0-12
O Subtraction 0-15

O Subtraction 0-20

Improves Learning, but Makes it Clear Who Needs More

Mixed Addition/Subtraction 0-20

Intervention Progress

\checkmark Mixed Addition/Subtraction 0-20
\checkmark Fact Families: Add/Subtract 0-20
\checkmark Addition/Subtraction 3-Digit Numbers w \& w/o Regrouping
\checkmark Multiplication 0-12
\checkmark Division 0-12

Fact Families: Multiplication/Division 0-12

- 1-Digit Mult by 2-3 Digit w \& w/o Regrouping

2-Digit Multiplied by 2 Digit w/o Regrouping

- 2-Digit Multiplied by 2 Digit w/Regrouping
\checkmark Div 1-digit into 2-3digits w/o Rems
\checkmark Divide 1-Digit into 1-2 Digit with Remainders
- Divide 2-Digit into 3-4 Digit w/Remainders

O Create Equivalent Multiplication Problems w/Common Factors

Manage the Intervention

Recent survey findings reported by:
Silva, M.R., Collier-Meek, M.A., Codding, R.S. et al. (2020). Data Collection and Analysis in Response-to-Intervention: a Survey of School Psychologists.
Contemporary School Psychology. https://doi.org/10.1007/s40688-020-00280-2

Dose What is Needed, Not What Fits Schedule

Codding, R., VanDerHeyden, Martin, R. J., \& Perrault, L. (2016). Manipulating Treatment Dose: Evaluating the Frequency of a Small Group Intervention Targeting Whole Number Operations. Learning Disabilities Research \& Practice, 31, 208-220.

Don’t Do This

Add Components

Innovation Not Working

Increases
Complexity

Decreases
 Probability of
 Correct Use

Plan to be present when intervention is started.

Track intervention effects weekly.
Use
Implementation
Science

When growth is weak, check-in with teacher by watching intervention being implemented.

Help troubleshoot any barriers and say that you will check in again next week.

Wash, Rinse, Repeat.

Signs of an Effective Intervention

- Scores available for each week.
- Median increases each week within instructional groupings.
- Most students grow week over week.
- Very few students remain in the frustrational range.
- Few students require more intensive intervention.

Activity: NCII DBI Implementation Rubric

https://intensiveintervention.org/resource/dbi-implementation-rubric-andinterview

This is a High-Integrity Intervention

This is a Low-Integrity Intervention

Classwide Intervention Progress

Classwide Intervention Progress

Sums to 6

Skill Tree Progress

V Sumsto 6
v Sums to 12

ح Subtraction 0-5

- Sums to 20
- Subtraction 0-9

Fact Families: Add/Subtract 0-9

O Subtraction 0-12

O Subtraction 0-15

O Subtraction 0-20

Classwide Intervention Progress

Sums to 6

Skill Tree Progress

- Sumsto 6
- Sums to 12
- Subtraction 0-5
- Sums to 20
- Subtraction 0-9
- Fact Families: Add/Subtract 0-9

O Subtraction 0-12

O Subtraction 0-15

O Subtraction 0-20

Students do not know how to follow the classwide intervention routine.

Re-train the students. Show the students how to get into working pairs, how to use the materials, how to provide high-quality feedback, and how to be engaged.

Teacher is not completing all steps of the intervention.

Review missed steps and understand rationale. Papers must be scored during the intervention because that provides feedback to the student, provides the error correction opportunity, and provides goal attainment opportunity. The error correction component is important because it improves student accuracy for the next session.

Children seem bored with the intervention.

Include rewards to motivate students. Display the median graph on dashboard for the class to see their growth. Be sure to set daily goals with the students!

Gains Across Years and By Dosage

Cumulative Protective Benefit Can Be Seen

Beginning of Year DIBELS Math Composite Percent Proficient

It Takes Time to Move the "Big" Indicators

Percent Proficient on PSSA (State Year-End Test) for Grades 3 and 4

But After Year 2, they Move

PSAT Math Composite Score Before \& After Spring Math +30 points

Delivering Intensive
 Individual Intervention

Learning Process

All learning is a product of the interaction between the learner and the environment.

Functional academic assessment recognizes that the environment can be assessed and optimized to create a better child-environment fit to optimize learning (Lentz \& Shapiro, 1986).

To be successful interventions have to be selected based on their fit and installed into adequate host environments (Witt, VanDerHeyden, Gilbertson, 2004).

The Instructional Hierarchy

How to Plan Instruction Using Science (We will talk about this in Workshop 2)

Acquisition

Child response is inaccurate: Frustrational Performance.

Fluency

Child response is accurate but slow: Instructional Performance
Goal of instruction is to build fluency (accuracy + speed). Tactics should include: intervals of practice, opportunities to respond, delayed feedback, goals \& reinforcement for more fluent performance.

Generalization \& Adaptation

Child response is fluent: Mastery Performance
Goal is to promote
generalization. Tactics should include: cues to generalize,
corrective feedback for application and problemsolving, systematic task variation, fading of support.

Haring, N. G., \& Eaton, M. D. (1978). Systematic instructional procedures: An instructional hierarchy. In N. G. Haring, T. C. Lovitt, M. D. Eaton, \& C. L. Hansen (Eds.), The fourth R: Research in the classroom (pp. 23-40). Columbus, OH: Merrill.

Stages of Learning

New understanding.

Child cannot accurately respond without help.

Goal of instruction is Discrimination.

Child performance is
accurate, but
response is labored.

Goal of instruction is Fluency (rapid and accurate responding).

Skill is fluent.

Generalization/
 Adaptation

Goal of instruction is to increase the conditions under which the child can respond correctly (stimulus generalization) \& alteration of the skill to solve new problems (response adaptation)

Test the Effects of Reward \& Instructional Supports in Tandem with Task Difficulty

Noell, G. H., Gansle, K. A., Witt, J. C., Whitmarsh, E. L., Freeland, J. T., LaFleur, L. H., et al. (1998). Effects of contingent reward and instruction on oral reading performance at differing levels of passage difficulty. Journal of Applied Behavior Analysis, 31, 659-663.

Features to Adjust \& Align for Successful Intervention

- Learner
- Sensitivity to contingencies/rewards for performance
- Level of skill proficiency/understanding
- Presence at school
- Motivation, attention, engagement
- Rapport with the teacher
- Environment
- Task difficulty
- Explicit clarity of antecedent support for correct responding (materials, cues, guided instruction)
- Opportunities to respond
- Corrective feedback
- Rapport with the teacher
- Whole-class engagement
- Whole-class skill proficiency

Tier 2 Take-Aways

- Group size can vary (larger groups not associated with weakened efficacy
- Groupings must be flexible (they should change based on learner growth \& need- in math this means every 1-2 weeks)
- Sessions can be brief, but more frequent is better (dosage).
- Students can work in pairs (like a mini-classwide intervention) to maximize opps to respond \& feedback
- Can be used for Acquisition and Fluency-Building interventions

For Math: Use Screening Data

Classwide Intervention

Spring 2017-18 Screening Results

The results are in. Let's take a look.

Classroom Performance

6\% of your class reached the target on all of the screening assessments. Extra practice will help you reach mastery at this grade level.
The classwide intervention has already been started

Sample Back to Find Starting Level \& Tactic

You will Need a Range of Interventions \& Data to Connect them to the Student

Procedural \& Conceptual Understanding for Middle School Math						
Fluency-Building		Acquisition				
Classwide Math Intervention	Timed Trial	Response Cards	Cover Copy Compare	Guided Practice	Incremental Rehearsal	Bingo

Stage of Learning	Student Performance	Goal of Intervention	Intervention Example
Acquisition	Frustrational: inaccurate	Establish 100\% correct responding. Discrimination	Cover, copy, and compare; Guided Practice
Fluency-Building	Instructional: accurate but not rapid.	Build fluency	Flashcards, timed performance with incentives, response cards
 Adaptation	Mastery: Fluent (i.e., accuracy + speed)	Establish robust application	Guided practice intervention

To Find the "Right" Intervention

- Step 1: Identify the "Goal" skill or understanding.
- Step 2: Specify the necessary pre-requisite understandings.
- Step 3: Survey-level assessment to sample back or "drill down" to find the right intervention target.
- Step 4: If performance is frustrational => Give acquisition intervention. If performance is instructional $=>$ Give fluencybuilding intervention. If performance is mastery => Give generalization opportunities

Effective
 Acquisition Interventions in Math

 the child to fill in the missing number for each unlabled unit on the number line.
 way?
 how to start with 10 and count up 2 units.

Explicitly proof the algorithm

Show More than One Way to Solve

		9											
		1	2	3	4	5	6	7	8	9	10	11	12
3 Sets of	1	Elen	ECK	Wh	Hen	Wh	Nen	Nen	He,	NC,			
	2	Hen	ECA	HC	Hen	ten	Hen	Hen	Hea	Hen			
	3	Hela	He,	Hen	Hen	Hen	He,	Hen	He,	Hen			
	4												
	5												
	6												
	7												
	8												
	9												
	10												
	11												
	12												

Let's find the solution to 3×9 on a number line. We can think of 3×9 as 3 sets of 9 Let's count out each set and then find the product or Lefs find the sol
answer of 3×9.

How many sets of 9 are in 27 ?
$3 x$ \qquad $=27$

We have learned that when we divide with whole numbers, it is the same as solving for an unknown factor. In other words, $\mathbf{8}$ divided by $\mathbf{4}$ is the same as asking $\mathbf{4}$ times what number will equal 8 ? We could write this as $\mathbf{~} 4 \times \boldsymbol{x}=8$ '. We can solve this in our heads because we know our multiplication facts. But we can also solve it procedurally.

You already know that any number can be multiplied by 1 without changing the quantity. Let's check and see.
$8 \times 4=32$
$8(1) \times 4(1)=32$

This is useful to you because when you need to create an equivalent fraction with a different denominator (for example, when you want to compare close fraction quantities or when you want to add or subtract with fractions), you can multiply the fraction by a value of 1 to change the denominator.

Connection to Previous Understanding

$12=$ \qquad $+$ \qquad
$14=$ \qquad $+$ \qquad
$13=$ \qquad $+$ \qquad
\qquad Connects Addition Facts to Place value understanding
$8+8+2=10+$ \qquad
-
$5+5+8=10+$ \qquad
$4+4+6=10+$ \qquad
$13+3=$ \qquad $+$ \qquad $+$ \qquad
$14+4=$ \qquad $+$ \qquad $+$ \qquad

Connection to Future Understanding

Let's find the "doubles" inside these problems.

Convert Quantities

\qquad ${ }^{+}+$
\qquad
\qquad $+$
$16=$ \qquad $+$
$20=$ $+$

Now we are warmed up. Fill in the blanks for each problem below. You must include a double.
\qquad
$9=4+\quad+$
$17=8+$ \qquad $+$
$3=1$ \qquad $+$
$7=3$ \qquad $+$
$11=5$ \qquad $+$
$15=$
$19=3+$ $+$
$19=1+$
\qquad

Now let's find IO's inside these problems to find the sums. Fill in the missing number and remember, you must make a 10.

Acquisition Interventions

Explicit Modeling: Common Denominators

If we want to add $3 / 8$ and $3 / 5$, however, we must convert the fractions to the same base unit. In other words, we have to find a common denominator. First, let's write the multiples of each denominator. Guide the student to fill in each cell of the table. What is the common multiple? 40, that's right. But our work is not done. We have to convert each fraction to a $1 / 40$ unit fraction. We know we can multiply any fraction quantity by I and it won't change the quantity. To convert the first fraction $3 / 8$ to a $1 / 40$ unit fraction, we can multiply $3 / 8$ by $5 / 5$ and that gives us $15 / 40$. What must we multiply $3 / 5$ by to get a $1 / 40$ unit fraction that's equivalent to $3 / 5$? $8 / 8$, that's right. So $3 / 5 \times 8 / 8=24 / 40$.

Let's do some more.

Find the Common Multiple

$\times 1$	$\times 2$	$\times 3$	$\times 4$	$\times 5$	$\times 6$	$\times 7$	$\times 8$	$\times 9$
8	16	24	32	40	48	56	64	72
5	10	15	20	25	30	35	40	45

Now Convert the Fractions

$\times 1$	$\times 2 / 2$	$\times 3 / 3$	$\times 4 / 4$	$\times 5 / 5$	$\times 6 / 6$	$\times 7 / 7$	$\times 8 / 8$	$\times 9 / 9$
$3 / 8$				$15 / 40$				
$3 / 5$							$24 / 40$	

Dividing with Fractions

Let's think about $1 / 2+3 / 4$.

How many $1 / 2$ parts are in $1 / 2$? There is less than one $1 / 4$ part in $1 / 2$. How do we know?
$1 / 2=1 / 4+1 / 4$.
$1 / 4=1 / 4+1 / 4+1 / 4$. There are less than three $1 / 4$-parts in two- $1 / 4$ parts.
Let's try $1 / 2$ divided by $1 / 4$.

Ensure that the child answers each problem correctly. Ensure that the child writes the number in the box without peeking at the

 answer box. Ensure that the child lifts the cover to check his or her answer.\square Ensure that the child makes a check mark in the "Match" box for correct answers.
\square If there is not a match (the child's response was incorrect), guide the student to count again and assist as needed to ensure correct counting/adding.

Troubleshoot

Children should be able to fluently read numbers, be able to count fluently from I-20, be able to count sets of objects and specify the number of objects, and understand that counting up from 0 to 20 indicates greater quantities to benefit maximally from this intervention.

Once the child can fluently draw and count both sets of hash marks to obtain the sum, guide the child to identify the larger number and count up.

If the child cannot readily identify the larger number, have the child circle the larger number in the problems on the practice page.
If the child continues to struggle to identify the greater number in the set, then consider adding the "Establish Quantity Discrimination" intervention to this intervention.

The purpose of timing the intervention period is to contain the intervention to a focused and productive 10 -minute period.
This intervention requires direct assistance from the teacher. The teacher should sit beside the child and actively monitor each response to ensure the student is completing each problem accurately.

If a mistake is made, the teacher should guide the student to "rry again" and provide prompts as needed to ensure correct responding.
For example, the teacher might say, Stop. $12+7$ does not equal 18 , let's try again.
If the child does not respond correctly, the teacher might say, Which number is larger? I2, that's right. So let's count seven up from $\mathbf{I 2}$.
If the child does not respond correctly the teacher might model, saying, ' 12 " then holding one finger up at a time, $13,14,15,16,17,18$, 19. So what is $12+7$? 19, that's right. Let's do the next one.

Immediate Corrective Feedback

When we convert improper fractions to mixed numbers, we will take a whole number quantity out of the fraction. When we do this, the numerator will be less than the denominator because the remaining fractional value will be less than 1.
To convert the improper fraction to a mixed number, we:
Divide the numerator by the denominator, asking how many times the denominator can be divided into the numerator, and identify any remainder Write the remainder as the new numerator
Copy the denominator from the original fraction.

Day I
Acquisition Convert Improper Fractions to Mixed Numbers
Student: \qquad

Work Problem	Check Answer	Match?	Work Problem	Check Answer	Match?
$\frac{75}{7}=$	$\frac{75}{7}=10 \frac{5}{7}$		$\frac{95}{9}=$	$\frac{95}{9}=10 \frac{5}{9}$	
$\frac{25}{4}=$	$\frac{25}{4}=6 \frac{1}{4}$		$\frac{109}{10}=$	$\frac{109}{10}=10 \frac{9}{10}$	
$\frac{35}{4}=$	$\frac{35}{4}=8 \frac{3}{4}$		$\frac{13}{3}=$	$\frac{13}{3}=4 \frac{1}{3}$	

Build Conceptual Understanding

Complete several of these each day with the child, encouraging the child to solve each problem aloud:
Play War: Make 20 cards with mixed numbers (2 copies of each for a total of 40 playing cards). Each playe furns over a card and the player with the greater quantity wins both cards. If the values are tied, then each player places three cards face-down and furns over the fourth card. The player with the higher value card to all the cards. The object of the game is to win all the cards.

Using the day's practice problems, have the student draw each mixed number on a number line. Several number lines are provided below the sample problem. Help the student choose the best one.

This one shows $1 / 4$ units.

$$
\begin{aligned}
& \begin{array}{l}
\frac{55}{7}=\frac{7}{7}=\frac{49}{}=\begin{array}{l}
\text { This one is not enough. } \\
\begin{array}{l}
\text { How much more is } \\
\text { needed? } \\
\text { This one is too much. } \\
\text { How much too much is this } \\
\text { one? }
\end{array}
\end{array}=\begin{array}{l}
\text { Answer will } \\
\text { be between } \\
\text { these two } \\
\text { factors }
\end{array} \\
\text { Let's find the answer on a number line. We can ask, How many } 1 / 7 \text { units are in } 55 / 7 \text {. There are } 7,1 / 7 \text { th units in } \\
\text { each increment of } 1 \text {. Let's count and check (1/7+1/7+1/7+1/7+1/7+1/7+1/7=7/7 or } 1 \text {). }
\end{array} \\
& \text { each increment of } 1 \text {. Let's count and check }(1 / 7+1 / 7+1 / 7+1 / 7+1 / 7+1 / 7+1 / 7=7 / 7 \text { or } 1) \text {. }
\end{aligned}
$$

So we want to multiply $7 \times(7 / 7)$ which gives us $49 / 7$. How many more $1 / 7^{\text {th }}$ units do we need to get to 55 ? That's right, 6 more $1 / 7^{\text {th }}$ units will get us to $55 / 7$ or $551 / 7^{\text {th }}$ units. We can count and check if we want.

Can you see another way to get to 55/7 that's easier and faster to find on the number line (hint, look above)?

Right, $8 \times 7 / 7$ is $56 / 7$ so just one more $1 / 7^{\text {th }}$ unit than we need.

Let's practice converting whole numbers into fraction base unit quantities. We've just learned how to convert 7 into $1 / 7$ units. We multiplied $7 / 1 \times 7 / 7$ to get 49/7. This makes sense because we know, $49 \div 7=7$.

Let's try some more. Write the equation and then solve.
Change 5 into I/4 units: \qquad x \qquad $=$ \qquad

Change 3 into I/6 units: \qquad x \qquad $=$ \qquad

Change 4 into I/8 units: \qquad x \qquad $=$ \qquad

Change 2 into I/IO units: \qquad x \qquad $=$ \qquad

Change 8 into I/5 units: \qquad x \qquad $=$ \qquad

Change 3 into I/7 units: \qquad x \qquad $=$ \qquad

Let's think more about improper fraction quantities. A few moments ago, we looked at 55/7 on the number line. We can see that $55 / 7$ is between 7 and 8 on the number line. $55 / 7$ is more than 7 but less than 8 . Let's complete the following statements to make them true. There are several answers that can be correct for these questions, but for today, I want you to choose the closest whole number on either side of the improper fraction quantity. If you want, you can draw a number line next to each statement to prove your conclusion.
$10 / 8$ is more than \qquad but less than \qquad .

Copyright 2019 Dr. Amanda M. VanDerHeyden. All rights reserved.

$14 / 5$ is more than \qquad but less than \qquad .
$10 / 3$ is more than \qquad but less than \qquad .
$17 / 5$ is more than \qquad but less than \qquad .
$19 / 4$ is more than \qquad but less than \qquad .
$26 / 5$ is more than \qquad but less than \qquad .

Fill in the missing number to solve. Try to solve these by thinking of each quantity on a number line.
$44 / 9+$ \qquad $=5$
$14 / 5+$ \qquad $=3$
$19 / 5+$ \qquad $=4$

9/5 + \qquad $=2$
$13 / 7+$ \qquad $=2$

10/8- \qquad $=1$

14/3- \qquad $=4$

16/5- \qquad $=3$

Why is the numerator larger than the denominator when a mixed number is converted to a fraction? Is the numerator always greater than the denominator when a mixed number is converted to a fraction?

Can the numerator ever be greater than the denominator if the fraction is in its simplest form?

Using problems from the day's practice materials, ask the student to check to see that an improper fraction was correctly converted to a mixed number by asking the student to convert the improper fraction back to a mixed number.

Ask, Why is it useful to convert an improper fraction to a mixed number? (Hint: easier to understand quantity).

If it Feels Like a Trick, It Is

Acquisition Intervention Protocol to Try

- An acquisition intervention for establishing understanding of how to divide fractions: https://static1.squarespace.com/static/57ab866cf7e0ab5cbba 29721/t/5dfbce55f74ce17bca99ffd7/1576783445988/Spring+ Math+-+Sample+Individual+Intervention.pdf

Acquisition Tactics to Look For

Use manipulatives with K \& 1
Use expanded notation
Convert to equivalent quantities
Solve for missing value/unknown
Graphics- number lines, area models, graphs
Find \& Fix problems
True or False. Change to make true.

Excellent Fluency-Building Interventions Are

- Easily done in small groups.
- Group size can be flexible
- Key is active responding of all children
- Groups must be dynamic (children should change groups based on skill mastery)
- Dosage has to be 4 days per week, but short sessions are fine.
- Emphasize high OTRs, delayed corrective feedback, use of goals and rewards.

In Math, look for fluencybuilding Interventions that

\qquad

Work Problem	Check Answer	Match?	Work Problem	Check Answer	Match?
$\begin{array}{r} 14 \\ +\quad 3 \\ \hline \end{array}$	$\begin{array}{r} 14 \\ +\quad 3 \\ \hline 17 \end{array}$			$\begin{array}{r} 3 \\ +\quad 1 \\ \hline 4 \end{array}$	
$\begin{array}{r} 15 \\ +\quad 0 \\ \hline \end{array}$	$\begin{array}{r} 15 \\ +\quad 0 \\ \hline 15 \end{array}$		$\begin{array}{r} 1 \\ +\quad 17 \\ \hline \end{array}$	$\begin{array}{r}1 \\ +\quad 17 \\ \hline 18\end{array}$	
16	16 .		19	19	

Symbolic Representation

Ask the child, When we add two numbers that are greater than zero, will the answer be greater than or less than this number(point to the top number)?

Will the answer be greater than or less than this number(point to the bottom number)?
When we add zero to another number, what will the answer be? Can you explain why?
Write an addition problem with a sum of 10 , using the greatest number of addends possible(Answer: $1+1+1+1+1+1+1+1+1+1$). Write an addition problem with a sum of 10 , using the greatest number possible as one of the two numbers you are adding(Answer $10+$ $0)$

Find two doubles in the problem $6+1$ (Answer: $2+2+3$ and $3+3+1)$.
Write an addition problem to show $\mathbf{1 0}$, using only the number 2.

Asks Student to Articulate Rule or Pattern

Let's find the "doubles" inside these problems.

Now let's find 10 's inside these problems to find the sums. Fill in the missing number and remember, you must make a 10

\square Count the number of correctly completed problems. Write this number on the Progress Monitoring Chart.
\square Allow the child to select a small reward from the treasure chest for beating his or her last best score.

Monitor Progress Establish Sums to 20 6/10/2018

$$
\begin{aligned}
& \text { Monitoring Student Progress } \\
& \text { CHART FOR }
\end{aligned}
$$

Weekly Goal: \qquad

My score on the timed test is: \qquad

Did I beat my score?

Use of Goals and Rewards

Use Games to Build Fluency!

Play War: Make a stack of cards with 20 randomly selected numbers between 20 and 99 (2 of each) and play "war." Each player turns over a card and the player with the higher-value number wins both cards. If the values are tied, then each player places three cards face-down and turns over the fourth card. The player with the higher value card takes all the cards. The object of the game is to win all the cards.

Play 3-in-a-row bingo: Here is another game that can be played as a single player or with multiple players. Each player needs a number grid (see below). Using the day's practice problems and answer key (don't show the student the answer key), just call out a problem and the student will try to answer verbally and make an X over the number on their grid. The object is to get three in a row in any direction to win the game. If needed, the student can write the problem to solve it. If the student makes an error solving the problem, then the he or she may not place an X on the grid for that turn.

1	2	3	4	5	6	7	8	9	10	11	12	13	14
15	16	17	18	19	20	21	22	23	24	25	26	27	28
29	30	31	32	33	34	35	36	37	38	39	40	41	42
43	44	45	46	47	48	49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96	97	98
99	100	101	102	103	104	105	106	107	108	109	110	111	112
113	114	115	116	117	118	119	120	121	122	123	124	125	126
127	128	129	130	131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150	151	152	153	154
155	156	157	158	159	160	161	162	163	164	165	166	167	168
169	170	171	172	173	174	175	176	177	178	179	180	181	182
183	184	185	186	187	188	189	190	191	192	193	194	195	196

Fluency Interventions

Play Add \& Take ten: Make a stack of 8 cards. Write, Add IO, Add 20, Add 30, Add 40 on the first four cards. Then write Add I0, Add 20, Add 30, Add 40 on the next four cards. Shuffle the cards. If you are playing single player, then pull a card and have the student start moving on the path to get to the winning space. If you draw a take card early in the game and there are not enough spaces to go back, just return to the start position of I. This game is fun to play with two players. If you play with two players, print two copies of the board and take furns drawing cards to see who can get to the winning position first.

Translate Verbal Expressions into Math Equations Matching Game

6 greater than a number is twice the number.

Directions: This game can be played with 2-4 players. Each of the numerical expression cards below has a matching verbal expression card. To play the game:

- Cut out the cards below.
- Shuffle all the numerical and verbal expression cards together.
- Deal each player a hand of 7 cards.
- When it is their turn the player draws one card.
- If the player has two cards that match (numerical and verbal expressions)

$$
x+6=2 x
$$ they place the pair face up on the table.

- The first player to lay down all of their cards wins the game.

Fluency-Building Tactics to Look for in Math

Convert to equivalent quantities

Solve for missing value/unknown

Solve a more challenging problem type, application opportunities.

Games for fluency building.

Generalization Opportunities: Subtraction 0-20 Word Problem Examples

- We have $\$ 12.00$ to buy treats at the concession stand. Each treat costs $\$ 1.00$. How many treats can we buy if we use all our dollars?
- On the way to the concession stand, we lost $\$ 3.00$. How many treats can we buy now?
- The concession stand is now selling an extra special double-size scoop of ice cream for $\mathbf{\$ 2 . 0 0}$. If we have $\mathbf{\$ 1 2 . 0 0}$ and we buy the double-scoop at \$2.00, how much money will we have left? How many regular \$1.00 treats can we buy?
- You are playing a board game. You have moved forward 10 spaces from the start. Your opponent is ahead of you by 6 spaces. What space is your opponent on? How many spaces ahead is your opponent?

Screening

Quick review of best practices for academic screening

Post-COVID implications

Failed Screen
Passed Screen

Risk (\& Prediction) Varies with Base Rate

New Goal of Screening: Change the Base Rate

Figure 3. Accuracy of the preceding year's accountability scores in mathematics in predicting proficient performance on current end-of-year test for mathematics.

Figure 4. Accuracy of the mathematics screener for students who receive a free or reduced-price lunch.

Figure 5. Illustration of the use of intervention to reduce overall risk and permit more accurate screening decisions.

Year-End State Test Score in Reading

VanDerHeyden, A. M., \& Burns, M. K., (2019). Commentary: Improving decision making in school psychology: Making a difference in the lives of students, not just a prediction about their lives. School Psychology Review, 47, 385-395.

And May Do Harm for Students who Perform Above the $16^{\text {th }}$ Percentile

VanDerHeyden, A. M., \& Burns, M. K. (2018). Is More Screening Better? The Relationship Between Frequent Screening, Accurate Decisions, and Reading Proficiency. School Psychology Review, 47, 62-82.

Choose the Most

 Efficient Assessment

False Negative Rate = False Negatives/ total Criterion-Positive Cases

False Positive Rate = False Positives/ total Criterion-Negative Cases

False-Positive Errors Increase Substantially

False Negative Rate

False Positive Rate

	Sens	Spec	LR +	LR-	PPTP	NPTP
MAP $(n=178)$	0.83	0.43	1.46	0.40	29%	10%
MAP Fall $(n=399)^{* *}$	0.83	0.66	2.44	0.26	41%	7%
DRA $(n=171)$	0.70	0.56	1.59	0.54	31%	13%
DRA Fall $(n=385)$	0.70	0.72	2.5	0.42	41%	12%
CBM $(n=176)$	0.73	0.44	1.30	0.61	27%	15%
CBM Fall	0.73	0.61	1.87	0.44	35%	All Students
$(n=394)$						

Use Classwide Intervention as Gate in Screening

Mixed Addition/Subtraction 0-20

Create Intervention Materials to View or Print
Create Intervention Materials

Fall 2019-20 Screening Results

The results are in. Let's take a look...

Classroom Performance

4\% ofyour class reached the target on all of the screening assessments. Extra practice will help you reach mastery at this grade level.
The classwide intervention has already been started.

Your class is currently in class wide intervention. Complete intervention activities daily and enter progress monitoring scores weekly

Mixed Addition/Subtraction 0-20

Create Intervention Materials to View or Print

(-) Create Intervention Materials

\square Classwide Median

Show Students scores

Intervention Progress

- Mixed Addition/Subtraction 0-20
- Fact Famlies: Add/5ubtract0-9

O Fact Families: Addtion/Subtraction 0-20

O Addition 3-Digit Numbers with \& without Regroupine

O Subtraction 3-Digit Number with \& without Regrouping

O Add/5ubtract 3-Digit Numbers with \& without Regrouping

O Multiplication 0-9

O Multiplication 5-9

O Division 0-9

O Fact Families:Multiplication/Division 0-9

O Multiplication 0-12

O Division0-12

O Fact Families: Multiplication/Dévision 0-12

O

Your class is currently in class wide intervention. Complete intervention activities daily and enter progress monitoring scores weekly.

Mixed Addition/Subtraction 0-20

Create Intervention Materials to View or Print

Classwide Rate of Improvement: 3.8 - Classwide Median

Intervention Progress

- Mised Addition/Subtraction 0-20
- Fact Families: Add/Subtract 0-9

O Fact Families:Addition/Subtraction 0-20

O Addition 3-Digit Numbers with \& without Regrouping

O Subtraction 3-Digit Number with \& without Regrouping

O Add/Subtract 3-Digit Numbers with δ without Regrouping

- Multiplication 0-9

O Multiplication 5-9

O Division 0-9

O Fact Families:Multiplication/Division 0-9

O Multiplication 0-12

O Division 0-12

O Fact Families: Multiplication/Division 0-12

Fall 2019-20 Screening Results

The results are in. Let's take a look...

Classroom Performance

4\% ofyour class reached the target on all of the screening assessments. Extra practice will help you reach mastery at this grade level.
The classwide intervention has already been started.

Classwide Intervention	Screening	Studen	Growth			
cos Classwide Intervention		Intervention Progress		Intervention Consistency	Average Weeks per Skill	Calculations as of Date
1 Mathematics			Intervention Skill 5 of 10	57\% 8 of 14 weeks with scores	2.8	Start of interventions

9 Eligible for Individual Intervention

The following students would benefit from individual interventions. If you have additional capacity, you may choose to begin interventions with some of these students. Intervention takes 10-15 minutes a day per student, so we recommend selecting 1 or 2 students to work with.

Amanda		
	Score	Target
Measure 1	28	13
Measure 2	41	20
Measure 3	18	20
Measure 4	18	20

	Baul	
	Score	Target
Measure 1	31	13
Measure 2	26	20
Measure 3	11	20
Measure 4	24	20

	Vicki Score	Target
Measure 1	31	13
Measure 2	49	20
Measure 3	18	20
Measure 4	15	20

Fall Screening

Classwide Intervention Lowers Base Rate of Risk \& Improves Decision Accuracy

Amanda VanDerHeyden
 Fairhope, Alabama
 @amandavande1
 www.springmath.com
 amandavande@gmail.com

Final Questions, Discussion

